Building the Hospital of the Future: Making Smart Investments

Baystate Medical Center
Springfield, MA

Healthcare Facilities Symposium & Expo
Navy Pier – Chicago
2 October 2012

Presenters

Stanley Hunter, LEED AP
Project Executive
Baystate Health

John Saad, HFDP, LEED AP
Managing Principal
R.G. Vanderweil Engineers, LLP

Kurt Rockstroh, FAIA, ACHA
President and CEO
Steffian Bradley Architects

Baystate Medical Center Campus

Prior to Construction

Baystate Health Overview

Overall:
• Three hospitals
• 70+ medical practices & clinics
• $1.5m annual revenue
• 10,000 employees
• Managed care organization

Recognitions:
• 2011 Thomson-Reuters Top 15 mid-size healthcare systems
• Top 100 integrated healthcare system for last 10 years
Baystate Medical Center

Overview:
- Primary hospital of Baystate Health
- Academic medical center
- Tertiary center for Western Massachusetts
- 716 licensed beds
- 116,000 ED visits/year
- 2 million square feet
- Outpatient campus - half mile away

Recognitions:
- LeapFrog Group Top 40 Hospital
- Magnet Hospital designation in 2006 and 2010

2001 Master Plan Program Priorities

Outpatient Services
- Cancer
- Imaging
- Consolidation of services

Inpatient Program Priorities
- Inpatient bed replacement
- Surgery
- Endoscopy
- Emergency Department
- Heart and Vascular
- Imaging
- Parking

2001 Master Plan Program Result

- Expansion of Outpatient Campus
- D’Amour Center for Cancer Care (2004)
- Rehabilitation Center (2006)
- Outpatient Surgery Center (2011)
- Outpatient Imaging Center (2012)

2006 Master Plan Program Priorities

- Inpatient Bed Replacement
- Heart and Vascular Care
- Surgery
- Imaging
- Emergency Department
- Children’s Hospital
- Support Services
2006 Master Plan Program Result

Baystate Medical Center’s “Hospital of the Future”
640,000 gsf building with phased fit-out and shell space

Hospital of the Future

Phase 1 - Heart & Vascular & Beds Replacement (2012)
640,000 building
303,000 gsf fit-out
$251M total cost
Phase 2 – Emergency Dept (2012)
77,000 gsf fit-out
$45M total cost
Phase 3 – Beds Replacement (2015/6)
80,000 gsf fit-out
$44M total cost
Remaining Phases (schedule TBD)
180,000 gsf fit-out
Budget TBD

Guiding Principles

- Comprehensive Design Plan
 - Develop complete design through Schematic Design, then phase fit-out
- Sustainability, following Green Guide to Healthcare
- Healing Environment that reinforces the Six Aims of IOM
 - Safety
 - Effectiveness
 - Patient Centered
 - Timeliness
 - Efficiency
 - Equity
- Enhance the teaching environment
- Provide flexibility to support innovative care models

Reasons for Shell Space - Site Constraints

- Last buildable site adjacent to other patient care buildings
- Residential zoning for hospital - requires special permit for new construction
- Residential on 3 property lines
- Wetlands on east border
- Historically significant building restricted buildable area
Reasons for Shell Space - Construction Disturbance

Campus
- Construction Traffic
- Vibration to existing buildings
- Dust, Noise
- Utility work

Neighborhood – one 3 year construction period versus multiple construction periods

Reasons for Shell Space - Funding and Costs

Flexibility – Fit-out as funds and program require

Less Long-term Cost – economies of scale for shell ($120/sf +/- marginal add for shell space)

Inflation at time of decision (2006/7) was high, so discounted future cost of a second, later building was higher than building now

2008 Financial Crisis Testing Validity of Approach

Scenario in September 2008:
- Site work contract awarded April 2008 and underway
- Sub-contractor bids for shell and fit-out due September to November 2008
- Demolition of existing building underway
- Planned to sell bonds November 2008

Baystate Reaction (October 2008 to January 2009):
- Continued site work with own equity, delaying selling of bonds
- Re-analyzed program volume and revenue projections from scratch
- Re-assessed condition of existing buildings if we cancelled project
- Explored multiple options of smaller building with less or no shell space

Result:
- February 2009 Board decision to continue with project
- Implemented VE options (e.g. reduced fit-out by 2 OR’s)
- Reduced fit-out by 2 OR’s and other marginal items ($3M reduction)
- Delayed bonds to May 2009
- Increased New Market Tax Credit bonds from $20M to $70M
- Accelerated Emergency Department (Phase 2) by 3 years
The Hospital of the Future

640,000 sf replacement facility

- 96-192 Medical Surgical Beds (5-6-7)
- 30-72 Intensive Care Beds (3-4)
- 50 Pediatric Beds (3-4)
- 12 Cardiovascular Surgery ORs (2)
- 24 General Surgery ORs (2)
- Emergency Department / Imaging (1)
- Staff Support (B-1)
- CSP / Support (B)

Smart Planning & Smart Investments

- Master Planning for Mechanical Systems & Equipment
 - MEP Systems Needed to be Flexible (First Cost vs. Expandable)
 - N+1 Criteria for General Mechanical Equipment
 - N+1 Requirements for Operating Rooms
 - Master Planning Strategy – Phasing
 - Blocking & Massing of Building – Building & Program Optimization
The Hospital of the Future

Substations
- Double ended substations were provided each for the west wing, south wing, and chiller plant normal power.
- Single ended substations were provided each for the west wing, south wing, and chiller plant essential power.
- Each wing has 2 sets of closets that stack through the building for both normal and essential power distribution.

Shell spaces
- West wing, south wing, and pediatric wing shell spaces have temporary panels for small power and lighting, and the electrical closets are ready for future equipment.
- The pediatric wing temporary panels for small power and lighting are served from the south wing substation for phase 1.

Future equipment
- When the pediatric wing is fit out, the new pediatric wing substations will be installed in reserved spaces in the basement.
- Electrical closets within shell spaces will be fit out with new branch distribution to meet program requirements.

Chiller Plant

<table>
<thead>
<tr>
<th>Description</th>
<th>Installed Capacity (Tons)</th>
<th>Load (Tons)</th>
<th>Spare Capacity (Tons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiller Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase One Only</td>
<td>2900</td>
<td>1000</td>
<td>NA</td>
</tr>
<tr>
<td>(2) 1000 ton chillers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiller Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase One and E/O</td>
<td>2400</td>
<td>1500</td>
<td>NA</td>
</tr>
<tr>
<td>(2) 1000 ton chillers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiller Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase One and E/O (4) 2500</td>
<td>2400</td>
<td>1500</td>
<td>300</td>
</tr>
<tr>
<td>(2) 1000 ton chillers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiller Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase One and E/O (with added 4th chiller)</td>
<td>4000</td>
<td>2012</td>
<td>1028</td>
</tr>
<tr>
<td>(4) 1000 ton chillers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Boiler Plant

<table>
<thead>
<tr>
<th>Description</th>
<th>Installed Capacity (BHP)</th>
<th>Load (BHP)</th>
<th>Spare Capacity (BHP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Plant Phase One Only</td>
<td>1500</td>
<td>420</td>
<td>340</td>
</tr>
<tr>
<td>(3) 500 BHP Boilers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Plant Phase One and ED (no added fourth tower)</td>
<td>1500</td>
<td>360</td>
<td>150</td>
</tr>
<tr>
<td>(3) 500 BHP Boilers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Plant Phase One and ED (with added fourth tower)</td>
<td>2000</td>
<td>360</td>
<td>650</td>
</tr>
<tr>
<td>(4) 500 BHP Boilers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler Plant Fail Build Out (with added fourth boiler)</td>
<td>2500</td>
<td>1200</td>
<td>240</td>
</tr>
<tr>
<td>(4) 500 BHP Boilers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emergency Power

<table>
<thead>
<tr>
<th>Description</th>
<th>Installed Capacity (kW)</th>
<th>Load (kW)</th>
<th>Spare Capacity (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Generators Phase One Only</td>
<td>3000</td>
<td>1350</td>
<td>220</td>
</tr>
<tr>
<td>(2) 1500 kW generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Generators Phase One and ED (no added generator)</td>
<td>3000</td>
<td>1824</td>
<td>94</td>
</tr>
<tr>
<td>(2) 1500 kW generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency Generators Phase One and ED (with added third generator)**</td>
<td>4000</td>
<td>1824</td>
<td>1396</td>
</tr>
<tr>
<td>(5) 1500 kW generators</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AHU Riser

Chiller Plant Flow Diagram
Thematic Language and Interpretation

Hospital of the Future

A Healing Rhythm

Rhythm of Color
Rhythm of Nature
Rhythm of Life
Rhythm of Innovation
Rhythm of Continuity

First Floor – New Emergency Department (Phase 2)

First Floor – Emergency Department
Size Comparison of New ED to Existing ED

<table>
<thead>
<tr>
<th></th>
<th>New ED</th>
<th>Existing ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>60,000sf</td>
<td>20,000sf</td>
</tr>
<tr>
<td>Visits/yr.</td>
<td>115,000</td>
<td>115,000</td>
</tr>
<tr>
<td>Trauma Rms</td>
<td>3 (2 pt. ea)</td>
<td>1</td>
</tr>
<tr>
<td>Treatment Spaces</td>
<td>94 Rooms</td>
<td>48 Bays</td>
</tr>
</tbody>
</table>

New ED Summary Space Program

- 3 Trauma Rooms (for 2 pt. each for surge capacity)
- 1 Pedi Resuscitation Room
- 17 Pedi Treatment Rooms
- 20 Urgent Care Rooms (GTA)
- 8 Behavioral Health Rooms (separate pod)
- 8 Adult Rooms
- 94 Rooms

Total Project Area = 77,000 SF

ED Central Floor Plan

Second Floor Plan
Applying New Acoustic Guidelines

- Single bed/same handed rooms
- “Back of House” noisy activities/spaces remote from patient rooms
- Triple glazing near helipad plus added structural mass
- Pt. visible w/ pt. room door closed
- Tested New Acoustic Guidelines for room noise levels and wall construction

Applying New Acoustic Guidelines

- Sound absorbing and cleanable materials researched
- Family gathering space away from patient rooms
- Mechanical system design to provide background noise levels supporting patient privacy
- Noisy mechanical spaces remote from patient rooms
Thank You.

Questions?

Building the Hospital of the Future: Making Smart Investments

Baystate Medical Center
Springfield, MA

Healthcare Facilities Symposium & Expo
Navy Pier – Chicago
2 October 2012